'\" e .\" Sccsid @(#)eqnchar.7b 1.2 (gritter) 12/9/05 .\" Derived from eqnchar(7), Unix 7th edition: .\" Copyright(C) Caldera International Inc. 2001-2002. All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" Redistributions of source code and documentation must retain the .\" above copyright notice, this list of conditions and the following .\" disclaimer. .\" Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" All advertising materials mentioning features or use of this software .\" must display the following acknowledgement: .\" This product includes software developed or owned by Caldera .\" International, Inc. .\" Neither the name of Caldera International, Inc. nor the names of .\" other contributors may be used to endorse or promote products .\" derived from this software without specific prior written permission. .\" .\" USE OF THE SOFTWARE PROVIDED FOR UNDER THIS LICENSE BY CALDERA .\" INTERNATIONAL, INC. AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR .\" IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED .\" WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE .\" ARE DISCLAIMED. IN NO EVENT SHALL CALDERA INTERNATIONAL, INC. BE .\" LIABLE FOR ANY DIRECT, INDIRECT INCIDENTAL, SPECIAL, EXEMPLARY, OR .\" CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF .\" SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR .\" BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, .\" WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE .\" OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, .\" EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. .TH EQNCHAR 7B "12/9/05" "Heirloom Documentation Tools" "BSD System Compatibility" .EQ tdefine ciplus % "\o'\(pl\(ci'" % ndefine ciplus % O+ % tdefine citimes % "\o'\(mu\(ci'" % ndefine citimes % Ox % tdefine =wig % "\(eq\h'-\w'\(eq'u-\w'\s-2\(ap'u/2u'\v'-.4m'\s-2\z\(ap\(ap\s+2\v'.4m'\h'\w'\(eq'u-\w'\s-2\(ap'u/2u'" % ndefine =wig % ="~" % tdefine bigstar % "\o'\(pl\(mu'" % ndefine bigstar % X|- % tdefine =dot % "\z\(eq\v'-.6m'\h'.2m'\s+2.\s-2\v'.6m'\h'.1m'" % ndefine =dot % = dot % tdefine orsign % "\s-2\v'-.15m'\z\e\e\h'-.05m'\z\(sl\(sl\v'.15m'\s+2" % ndefine orsign % \e/ % tdefine andsign % "\s-2\v'-.15m'\z\(sl\(sl\h'-.05m'\z\e\e\v'.15m'\s+2" % ndefine andsign % /\e % tdefine =del % "\v'.3m'\z=\v'-.6m'\h'.3m'\s-1\(*D\s+1\v'.3m'" % ndefine =del % = to DELTA % tdefine oppA % "\s-2\v'-.15m'\z\e\e\h'-.05m'\z\(sl\(sl\v'-.15m'\h'-.75m'\z-\z-\h'.2m'\z-\z-\v'.3m'\h'.4m'\s+2" % ndefine oppA % V- % tdefine oppE %"\s-3\v'.2m'\z\(em\v'-.5m'\z\(em\v'-.5m'\z\(em\v'.55m'\h'.9m'\z\(br\z\(br\v'.25m'\s+3" % ndefine oppE % E/ % tdefine incl % "\s-1\z\(or\h'-.1m'\v'-.45m'\z\(em\v'.7m'\z\(em\v'.2m'\(em\v'-.45m'\s+1" % ndefine incl % C_ % tdefine nomem % "\o'\(mo\(sl'" % ndefine nomem % C-/ % tdefine angstrom % "\fR\zA\v'-.3m'\h'.2m'\(de\v'.3m'\fP\h'.2m'" % ndefine angstrom % A to o % tdefine star %{ roman "\v'.5m'\s+3*\s-3\v'-.5m'"}% ndefine star % * % tdefine || % \(or\(or % tdefine wig % "\z>\v'.4m'\(ap\v'-.4m'" % ndefine >wig %{ > from "~" }% tdefine langle % "\s-3\b'\(sl\e'\s0" % ndefine langle %<% tdefine rangle % "\s-3\b'\e\(sl'\s0" % ndefine rangle %>% tdefine hbar % "\zh\v'-.6m'\h'.05m'\(ru\v'.6m'" % ndefine hbar % h\u-\d % ndefine ppd % _| % tdefine ppd % "\o'\(ru\s-2\(or\s+2'" % tdefine <-> % "\o'\(<-\(->'" % ndefine <-> % "<-->" % tdefine <=> % "\s-2\z<\v'.05m'\h'.2m'\z=\h'.55m'=\h'-.6m'\v'-.05m'>\s+2" % ndefine <=> % "<=>" % tdefine |< % "\o'<\(or'" % ndefine |< % <| % tdefine |> % "\o'>\(or'" % ndefine |> % |> % tdefine ang % "\v'-.15m'\z\s-2\(sl\s+2\v'.15m'\(ru" % ndefine ang % /_ % tdefine rang % "\z\(or\h'.15m'\(ru" % ndefine rang % L % tdefine 3dot % "\v'-.8m'\z.\v'.5m'\z.\v'.5m'.\v'-.2m'" % ndefine 3dot % .\u.\u.\d\d % tdefine thf % ".\v'-.5m'.\v'.5m'." % ndefine thf % ..\u.\d % tdefine quarter % roman \(14 % ndefine quarter % 1/4 % tdefine 3quarter % roman \(34 % ndefine 3quarter % 3/4 % tdefine degree % \(de % ndefine degree % nothing sup o % tdefine square % \(sq % ndefine square % [] % tdefine circle % \(ci % ndefine circle % O % tdefine blot % "\fB\(sq\fP" % ndefine blot % HIX % tdefine bullet % \(bu % ndefine bullet % oxe % tdefine -wig % "\(~=" % ndefine -wig % - to "~" % tdefine wig % \(ap % ndefine wig % "~" % tdefine prop % \(pt % ndefine prop % oc % tdefine empty % \(es % ndefine empty % O/ % tdefine member % \(mo % ndefine member % C- % tdefine cup % \(cu % ndefine cup % U % define cap % \(ca % define subset % \(sb % define supset % \(sp % define !subset % \(ib % define !supset % \(ip % .EN .SH NAME eqnchar \- special character definitions for eqn .SH SYNOPSIS .HP .ad l .nh .B /usr/ucb/eqn /usr/pub/eqnchar .RB [ files ] .B | /usr/ucb/troff .RB [ options ] .HP .B /usr/ucb/neqn /usr/pub/eqnchar .RB [ files ] .B | /usr/ucb/nroff .RB [ options ] .br .hy 1 .ad b .SH DESCRIPTION .I Eqnchar contains .I troff and .I nroff character definitions for constructing characters that are not available on the Graphic Systems typesetter. These definitions are primarily intended for use with .I eqn and .IR neqn . It contains definitions for the following characters .PP .nf .ta \w'angstrom 'u \n(.lu/3u +\w'angstrom 'u \n(.lu*2u/3u +\w'angstrom 'u .EQ "ciplus" ciplus "|\||" || "square" square .EN .EQ "citimes" citimes "langle" langle "circle" circle .EN .EQ "wig" wig "rangle" rangle "blot" blot .EN .EQ "-wig" -wig "hbar" hbar "bullet" bullet .EN .EQ ">wig" >wig "ppd" ppd "prop" prop .EN .EQ "" <-> "empty" empty .EN .EQ "=wig" =wig "<=>" <=> "member" member .EN .EQ "star" star "|\|" |< "nomem" nomem .EN .EQ "bigstar" bigstar "|\|>" |> "cup" cup .EN .EQ "=dot" =dot "ang" ang "cap" cap .EN .EQ "orsign" orsign "rang" rang "incl" incl .EN .EQ "andsign" andsign "3dot" 3dot "subset" subset .EN .EQ "=del" =del "thf" thf "supset" supset .EN .EQ "oppA" oppA "quarter" quarter "!subset" !subset .EN .EQ "oppE" oppE "3quarter" 3quarter "!supset" !supset .EN .EQ "angstrom" angstrom "degree" degree .EN .SH FILES /usr/pub/eqnchar .SH SEE ALSO troff(1B), eqn(1B)